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“… one flap of a 
sea-gull’s wing 
may forever 
change the 
future course of 
the weather”
(Lorenz, 1963)

Small errors in the initial conditions 
become larger in time.

Chaos in the atmosphere: Lorenz model

Chaos was introduced by Edward Lorenz in 1963, when he 
used a simplified system to model the earth's weather on a 
computer. 
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Sources of Uncertainty:

+

Uncertainty in the initial conditions:
• sampling error in measurements
• systematic error in measurements 
(e.g. instrumental biases)
• etc.

Ensemble 
Prediction 
System

Uncertainty in the model:
• Physical uncertainty in model parameters 
• Sampling uncertainty in statistical 
estimates of parameters
• Incomplete knowledge of external factors
• etc.

Multi-model
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• Discrete case:
Iterative 
systems

Logistic maps

Simple mathematical models allow us to understand the complex dynamic 

of nonlinear systems.

• Continuous case:
Differential 
equations

Lorenz systems

Toy models: Non linear dynamics & fractal geometry
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Spatial points do not grow independently

Toy models: Spatial coupling

Lorenz-96 model:

This model simulates the evolution of an atmospheric 
variable x in L grid points over a latitude
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Coupled chaotic maps:
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Spatio-temporal characterization of perturbations
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In non-linear systems, perturbations become as large

as the amplitude of the system. 

When the system is linearized they do not saturate.

The lower the initial amplitude of the perturbations, the later they saturate.

• Perturbations will exhibit a long-term average exponential growth with 
a characteristic rate:

Temporal growth of the perturbations
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In the non linear regime, perturbations loose variance

Dominated by the exponential growth. To avoid it:

Spatial growth of the perturbations
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Localization

Linear regime Non-linear regime



There is a strong parallel between the logarithmic perturbations and the

development of a rough interfase between two media.
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Logarithmic transformation
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Link between logarithmic perturbations and 
rough interfaces

• Pikovsky & Kurths (1994) use this transformation to introduce 
roughening interfaces in the dynamics of perturbations of 
spatiotemporal chaos.

• Pikovsky & Politi (1998) apply it to study the dynamic localization 
of Lyapunov vectors in spacetime chaos.

• López et al. (2004) apply this correspondence to explain the 
scaling properties of growing noninfinitesimal perturbations in 
space-time chaos.

• Primo et al. (2006) introduce this link to characterize the dynamic 
scaling of bred vectors in spatially extended chaotic systems.

• Primo et al. (2007) show that the correspondence is also valid for 
the complex atmospheric circulation models used in weather 
forecasting.
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h(x,t)= ln | δδδδ u(x,t) |

Interface growth
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Barabasi, A.-L. & Stanley, H. E. (1995): “Fractal Concepts in Surface Growth”. Cambridge University Press.



Mean-variance of logarithms diagram (MVL)

Figure: Gutierrez et al. (2008, Fig 2 (a) )

...)(ln|),(|ln
1

),(
1

)()( 1

11

+≈==== ∑∑
==

tttx
L

txh
L

thtM
L

x

L

x

λεδ

α2

1

22 )())(),((
1

)()( tlthtxh
L

twtV
L

x

≈−== ∑
=



MVL diagram

Figure: Gutierrez et al. (2008, Fig 2 (b) )



MVL diagram
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• Operational forecast Centres represent uncertainty in the 
initial conditions by perturbing the best estimation of the 
initial state or analysis (ensemble forecasting).

• The nonlinear dynamics of numerical models makes 
perturbations grow exponentially in time and localize in 
space.

• There are different methods to perturb the initial 
conditions and the spatio-temporal growth of the 
perturbations differs from one technique to the other.

• The characterization of perturbations growth contributes 
to determine the predictability barrier of the system.

Numerical models
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Spatio-temporal comparison of initial perturbation 

techniques:

• The operational singular vector system at 

ECMWF (SV), Lorenz 1965, Palmer et al (1993)

• Breeding vectors (BV) Toth and Kalnay (1993,1997)

• Breeding vectors rescaled by a geometrical 

mean (LBV) Primo et al (2005)

• Random field perturbation (RF) Magnusson et al (2008).

• Random perturbation technique 

Experiment:
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• Data: Generated by Linus Magnusson (Stockholm 
University)

• Model: ECMWF Ensemble Prediction System.
• Period: 20050101-20050115
• Number of Members: 20
• Steps: from 0h to 240h by 12 h.
• Parameter: Geopotential
• Level: 500HPa
• Time: 00:00:00
• Different areas:

North Hemisphere (90ºN, 30ºS, −180ºW, 180ºE), 
South Hemisphere (−30ºN, −90ºS, −180ºW, 180ºE), 
Europe (75ºN, 35ºS, −12.5ºW, 42.5ºE)
Tropics (−30ºN, 30ºS, −180ºW, 180ºE).

Experiment

Seminar, NCEP 27 July 2009





−100 0 100
−400

−200

0

200

400

P
e

rt
u

rb
a

ti
o

n

Lon

lat = 50  SV

−100 0 100

−20

0

20

40

P
e

rt
u

rb
a

ti
o

n

Lon

lat = 0

−100 0 100
−400

−200

0

200

400

Lon

BV

−100 0 100

−20

0

20

40

Lon

−100 0 100
−400

−200

0

200

400

Lon

LBV

−100 0 100

−20

0

20

40

Lon

−100 0 100
−400

−200

0

200

400

Lon

Rand Diff

−100 0 100

−20

0

20

40

Lon

−100 0 100
−400

−200

0

200

400

Lon

Random

−100 0 100
−200

0

200

Lon

Initial perturbations

Perturbations are dominated by the extratropics, 
but the tropics also show spatial structure
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Perturbations after 6 (black) and 10 (grey) days

Spatial structures become bigger and tend to a similar pattern
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Amplitude Growth

SV has smaller 
initial amplitude

After two days 
SV and BVs
amplitude is 
similar in the NH

Initial amplitude 
and growth is 
smaller in the 
Tropics than in 
the extratropics
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SV has 
fastest 
initial 
growth, 
but after 
around
three days 
growth 
rate 
converges

Seminar, NCEP 27 July 2009



0 48 96 144 192 240240
1

1.2

1.4

1.6

1.8

NH

steps

w
2

 

 

SV

BV

LBV

Rand Diff

Random

0 48 96 144 192 240
1

1.2

1.4

1.6

1.8

SH

steps

w
2

 

 

0 48 96 144 192 240
0.9

1

1.1

1.2

1.3

1.4

1.5

E

steps

w
2

 

 

0 48 96 144 196 240

0.8

1

1.2

1.4

1.6

1.8

2

T

steps

w
2

 

 

Variance growth

BVs provide 
perturbations 
with the highest 
correlation in 
the extratropics

Random 
perturbations 
start with lower 
correlation, but 
after around  
five days all 
techniques 
converge

Correlation in 
the Tropics 
seems not to be 
saturated after 
10 days
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Seasonal forecasts: DEMETER

Fernández et al. (2009, figs 2, 3)

• The DEMETER project is a multi-model seasonal 
ensemble with hindcasts for seven models covering a 
common 22-year period (1980-2001).
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MSc Student: Zak Kipling

Project: Error growth in medium-range forecasting models

The regions of the globe 
over which perturbations 
are optimised differ from 
model to model

Medium-Range forecasts: TIGGE

TIGGE project provides an archive of medium-range 
ensemble forecasts from a range of different operational 
models in a consistent format.
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Medium-Range forecasts: TIGGE
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Medium-Range forecasts: TIGGE



Medium-Range forecasts: TIGGE
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Medium-Range forecasts: TIGGE



• Perturbations have an exponential growth, get spatially
correlated and localized.

• A logarithmic transformation allows us to link perturbations
and rough interfaces growth, providing scaling properties
already obtained in this field. 

• Different initial perturbation techniques have been compared
using the MVL diagram. 

• This diagram is shown to be an useful tool to analyze the
spatiotemporal growth of perturbations, distinguising the
linear and non linear regime and the correlation and
amplitude growth.

• When comparing different initial perturbation techniques
applied to the ECMWF EPS, SV and BV have similar 
amplitude after 2 days in the North Hemisphere, and similar 
spatial correlation after 4-5 days.

• Perturbations in the Tropics grow more slowly and their
spatial correlation seems not to be saturated after 10 days
for any of the techniques.

Summary and conclusions
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Any questions?


